


OR

4 a. Derive the Euler-Bernoulli's beam theory equation.

b. A T- shaped cross –section of a beam shown in Fig Q4(b) is subjected to a vertical shear force of 100kN. Calculate the shear stress at the neutral axis, junction and flange, moment of inertia about horizontal, neutral axis is 0.0001134 m⁴.

Module-3

5 a. Derive the deflection equation EI $\frac{d^2y}{dx^2} = M$.

6

b. A simply supported beam having uniform cross-section is 14m span and is simply supported at its ends. It carrier a concentrated load of 120kN and 80kN at its two points at 3m and 4.5m from the left and right end respectively. If the M.I of the section is 160×10^7 mm⁴ and E = 200GPa. Calculate the deflection of the beam at load points and mid span by using Macaulay's method. (14 Marks)

OR

a. State the assumption made in pure Torsion theory and derive Torsion equation. (10 Marks)
b. A solid shaft rotating at 1000 rpm transmits 50kW. Maximum torque is 20% more than the mean torque. Shaft material has allowable shear stress of 50MPa and modulus of rigidity 80GPa. Angle of twist in the shaft should not exceed 1° in one meter length. Determine the diameter of the shaft. (10 Marks)

Module-4

7 a. Explain the principle of virtual work for a particle and write the statements. (10 Marks)
b. Define principles of virtual work for a rigid body and state the difference between principle of virtual work and complementary virtual work. (10 Marks)

OR

8a. State and explain Castigliano's I and II theorem.(10 Marks)b. State and derive Maxwell's reciprocal theorem.(10 Marks)

<u>Module-5</u>

9	a.	Define Fracture, with sketches explain. Type I, II and III fractures.	(10 Marks)
		Define Creep, with neat sketch, explain the different stages of creep.	(10 Marks)

OR

- 10 a. Draw typical S-N curves for mild steel and Aluminum and explain S-N-diagram in detail. (10 Marks)
 - b. Write down the factors affecting Fatigue life.

(10 Marks)

(06 Marks)

(10 Marks)

(10 Marks) tical shear